Tighter Linear and Semidefinite Relaxations for Max-Cut Based on the Lov\’asz-Schrijver Lift-and-Project Procedure
We study how the lift-and-project method introduced by Lov\’az and Schrijver \cite{LS91} applies to the cut polytope. We show that the cut polytope of a graph can be found in $k$ iterations if there exist $k$ edges whose contraction produces a graph with no $K_5$-minor. Therefore, for a graph with $n\ge 4$ nodes, $n-4$ iterations … Read more