An SDP Relaxation for the Sparse Integer Least Square Problem

In this paper, we study the sparse integer least square problem (SILS), which is the NP-hard variant of the least square problem, where we only consider sparse {0, ±1}-vectors. We propose an l1-based SDP relaxation to SILS, and provide sufficient conditions for our SDP relaxation to solve SILS. The class of data input which guarantee … Read more

Partial Lasserre relaxation for sparse Max-Cut

A common approach to solve or find bounds of polynomial optimization problems like Max-Cut is to use the first level of the Lasserre hierarchy. Higher levels of the Lasserre hierarchy provide tighter bounds, but solving these relaxations is usually computationally intractable. We propose to strengthen the first level relaxation for sparse Max-Cut problems using constraints … Read more

A Restricted Dual Peaceman-Rachford Splitting Method for QAP

We revisit and strengthen splitting methods for solving doubly nonnegative, DNN, relaxations of the quadratic assignment problem, QAP. We use a modified restricted contractive splitting method, rPRSM, approach. Our strengthened bounds and new dual multiplier estimates improve on the bounds and convergence results in the literature. Citation Department of Combinatorics & Optimization, University of Waterloo, … Read more

A Strictly Contractive Peaceman-Rachford Splitting Method for the Doubly Nonnegative Relaxation of the Minimum Cut Problem

The minimum cut problem, MC, and the special case of the vertex separator problem, consists in partitioning the set of nodes of a graph G into k subsets of given sizes in order to minimize the number of edges cut after removing the k-th set. Previous work on this topic uses eigenvalue, semidefinite programming, SDP, … Read more

Best case exponential running time of a branch-and-bound algorithm using an optimal semidefinite relaxation

Chvatal (1980) has given a simple example of a knapsack problem for which a branch-and-bound algorithm using domination and linear relaxations to eliminate subproblems will use an exponential number of steps in the best case. In this short note it is shown that Chvatals result remains true when the LP relaxation is replaced with a … Read more

Solving Pooling Problems by LP and SOCP Relaxations and Rescheduling Methods

The pooling problem is an important industrial problem in the class of network flow problems for allocating gas flow in pipeline transportation networks. For P-formulation of the pooling problem with time discretization, we propose second order cone programming (SOCP) and linear programming (LP) relaxations and prove that they obtain the same optimal value as the … Read more

Exact Semidefinite Formulations for a Class of (Random and Non-Random) Nonconvex Quadratic Programs

We study a class of quadratically constrained quadratic programs (QCQPs), called {\em diagonal QCQPs\/}, which contain no off-diagonal terms $x_j x_k$ for $j \ne k$, and we provide a sufficient condition on the problem data guaranteeing that the basic Shor semidefinite relaxation is exact. Our condition complements and refines those already present in the literature … Read more

Set-Completely-Positive Representations and Cuts for the Max-Cut Polytope and the Unit Modulus Lifting

This paper considers a generalization of the “max-cut-polytope” $\conv\{\ xx^T\mid x\in\real^n, \ \ |x_k| = 1 \ \hbox{for} \ 1\le k\le n\}$ in the space of real symmetric $n\times n$-matrices with all-ones-diagonal to a complex “unit modulus lifting” $\conv\{xx\HH\mid x\in\complex^n, \ \ |x_k| = 1 \ \hbox{for} \ 1\le k\le n\}$ in the space of … Read more

Tightness of a new and enhanced semidefinite relaxation for MIMO detection

In this paper, we consider a fundamental problem in modern digital communications known as multi-input multi-output (MIMO) detection, which can be formulated as a complex quadratic programming problem subject to unit-modulus and discrete argument constraints. Various semidefinite relaxation (SDR) based algorithms have been proposed to solve the problem in the literature. In this paper, we … Read more

Equivalences and Differences in Conic Relaxations of Combinatorial Quadratic Optimization Problems

Various conic relaxations of quadratic optimization problems in nonnega- tive variables for combinatorial optimization problems, such as the binary integer quadratic problem, quadratic assignment problem (QAP), and maximum stable set problem have been proposed over the years. The binary and complementarity conditions of the combi- natorial optimization problems can be expressed in several ways, each … Read more