Data-Driven Ranges of Near-Optimal Actions for Finite Markov Decision Processes

Markov decision process (MDP) models have been used to obtain non-stationary optimal decision rules in various applications, such as treatment planning in medical decision making. However, in practice, decision makers may prefer other strategies that are not statistically different from the optimal decision rules. To benefit from the decision makers’ expertise and provide flexibility in … Read more

Interpretable Policies and the Price of Interpretability in Hypertension Treatment Planning

Problem definition: Effective hypertension management is critical to reducing consequences of atherosclerotic cardiovascular disease, a leading cause of death in the United States. Clinical guidelines for hypertension can be enhanced using decision-analytic approaches, capable of capturing many complexities in treatment planning. However, model-generated recommendations may be uninterpretable/unintuitive, limiting their acceptability in practice. We address this … Read more

Optimizing Active Surveillance for Prostate Cancer Using Partially Observable Markov Decision Processes

We describe a finite-horizon partially observable Markov decision process (POMDP) approach to optimize decisions about whether and when to perform biopsies for patients on active surveillance for prostate cancer. The objective is to minimize a weighted combination of two criteria, the number of biopsies to conduct over a patient’s lifetime and the delay in detecting … Read more