A necessary condition for the guarantee of the superiorization method

We study a method that involves principally convex feasibility-seeking and makes secondary efforts of objective function value reduction. This is the well-known superiorization method (SM), where the iterates of an asymptotically convergent iterative feasibility-seeking algorithm are perturbed by objective function nonascent steps. We investigate the question under what conditions a sequence generated by an SM … Read more

Risk-Averse Antibiotics Time Machine Problem

Antibiotic resistance, which is a serious healthcare issue, emerges due to uncontrolled and repeated antibiotic use that causes bacteria to mutate and develop resistance to antibiotics. The Antibiotics Time Machine Problem aims to come up with treatment plans that maximize the probability of reversing these mutations. Motivated by the severity of the problem, we develop … Read more

Computing Counterfactual Explanations for Linear Optimization: A New Class of Bilevel Models and a Tailored Penalty Alternating Direction Method

Explainable artificial intelligence is one of the most important trends in modern machine-learning research. The idea is to explain the outcome of a model by presenting a certain change in the input of the model so that the outcome changes significantly. In this paper, we study this question for linear optimization problems as an automated … Read more

Inexact FISTA-like Methods with Adaptive Backtracking

Accelerated proximal gradient methods have become a useful tool in large-scale convex optimization, specially for variational regularization with non-smooth priors. Prevailing convergence analysis considers that users can perform the proximal and the gradient steps exactly. Still, in some practical applications, the proximal or the gradient steps must be computed inexactly, which can harm convergence speed … Read more

An inertial Riemannian gradient ADMM for nonsmooth manifold optimization

The Alternating Direction Method of Multipliers (ADMM) is widely recognized for its efficiency in solving separable optimization problems. However, its application to optimization on Riemannian manifolds remains a significant challenge. In this paper, we propose a novel inertial Riemannian gradient ADMM (iRG-ADMM) to solve Riemannian optimization problems with nonlinear constraints. Our key contributions are as … Read more

Polynomial-Time Algorithms for Setting Tight Big-M Coefficients in Transmission Expansion Planning with Disconnected Buses

The increasing penetration of renewable energy into power systems necessitates the development of effective methodologies to integrate initially disconnected generation sources into the grid. This paper introduces the Longest Shortest-Path-Connection (LSPC) algorithm, a graph-based method to enhance the mixed-integer linear programming disjunctive formulation of Transmission Expansion Planning (TEP) using valid inequalities (VIs). Traditional approaches for … Read more

Neural Embedded Mixed-Integer Optimization for Location-Routing Problems

We present a novel framework that combines machine learning with mixed-integer optimization to solve the Capacitated Location-Routing Problem (CLRP). The CLRP is a classical yet NP-hard problem that integrates strategic facility location with operational vehicle routing decisions, aiming to simultaneously minimize both fixed and variable costs. The proposed method first trains a permutationally invariant neural … Read more

Reduced Sample Complexity in Scenario-Based Control System Design via Constraint Scaling

The scenario approach is widely used in robust control system design and chance-constrained optimization, maintaining convexity without requiring assumptions about the probability distribution of uncertain parameters. However, the approach can demand large sample sizes, making it intractable for safety-critical applications that require very low levels of constraint violation. To address this challenge, we propose a … Read more

A Jamming Game for Fleets of Mobile Vehicles

We consider a two-player Nash game in which each player represents a fleet of unmanned aerial vehicles. Each fleet is supposed to distribute information among fleet members, while simultaneously trying to prevent the opposite fleet from achieving this. Using the electro-magnetic spectrum’s properties, we model each fleet’s task as a nonlinear Nash game. By reformulating … Read more

A Dynamic Strategic Plan for the Transition to a Clean Bus Fleet using Multi-Stage Stochastic Programming with a Case Study in Istanbul

In recent years, the transition to clean bus fleets has accelerated. Although this transition might bring environmental and economic benefits, it requires a long-term strategic plan due to the large investment costs involved. This paper proposes a multi-stage stochastic program to optimize strategic plans for the clean bus fleet transition that explicitly considers the uncertainty … Read more