Superiorization as a novel strategy for linearly constrained inverse radiotherapy treatment planning

Objective: We apply the superiorization methodology to the intensity-modulated radiation therapy (IMRT) treatment planning problem. In superiorization, linear voxel dose inequality constraints are the fundamental modeling tool within which a feasibility-seeking projection algorithm will seek a feasible point. This algorithm is then perturbed with gradient descent steps to reduce a nonlinear objective function. Approach: Within … Read more

The superiorization method with restarted perturbations for split minimization problems with an application to radiotherapy treatment planning

In this paper we study the split minimization problem that consists of two constrained minimization problems in two separate spaces that are connected via a linear operator that maps one space into the other. To handle the data of such a problem we develop a superiorization approach that can reach a feasible point with reduced … Read more

Developments in mathematical algorithms and computational tools for proton CT and particle therapy treatment planning

We summarize recent results and ongoing activities in mathematical algorithms and computer science methods related to proton computed tomography (pCT) and intensitymodulated particle therapy (IMPT) treatment planning. Proton therapy necessitates a high level of delivery accuracy to exploit the selective targeting imparted by the Bragg peak. For this purpose, pCT utilizes the proton beam itself … Read more

Designing an optimal sequence of non-pharmaceutical interventions for controlling COVID-19

The COVID-19 pandemic has had an unprecedented impact on global health and the economy since its inception in December, 2019 in Wuhan, China. Non-pharmaceutical interventions (NPI) like lockdowns and curfews have been deployed by affected countries for controlling the spread of infections. In this paper, we develop a Mixed Integer Non-Linear Programming (MINLP) epidemic model … Read more

Designing an optimal sequence of non-pharmaceutical interventions for controlling COVID-19

The COVID-19 pandemic has had an unprecedented impact on global health and the economy since its inception in December, 2019 in Wuhan, China. Non-pharmaceutical interventions (NPI) like lockdowns and curfews have been deployed by affected countries for controlling the spread of infections. In this paper, we develop a Mixed Integer Non-Linear Programming (MINLP) epidemic model … Read more

A new matheuristic and improved instance generation for kidney exchange programmes

Kidney exchange programmes increase the rate of living donor kidney transplants, and operations research techniques are vital to such programmes. These techniques, as well as changes to policy regarding kidney exchange programmes, are often tested using random instances created by a Saidman generator. We devise a new matheuristic that can optimally solve a benchmark set … Read more

A Multiobjective Approach for Sector Duration Optimization in Stereotactic Radiosurgery Treatment Planning

Sector duration optimization (SDO) is a problem arising in treatment planning for stereotactic radiosurgery on Gamma Knife. Given a set of isocenter locations, SDO aims to select collimator size configurations and irradiation times thereof such that target tissues receive prescribed doses in a reasonable amount of treatment time, while healthy tissues nearby are spared. We … Read more

Optimizing Active Surveillance for Prostate Cancer Using Partially Observable Markov Decision Processes

We describe a finite-horizon partially observable Markov decision process (POMDP) approach to optimize decisions about whether and when to perform biopsies for patients on active surveillance for prostate cancer. The objective is to minimize a weighted combination of two criteria, the number of biopsies to conduct over a patient’s lifetime and the delay in detecting … Read more

Dynamic string-averaging CQ-methods for the split feasibility problem with percentage violation constraints arising in radiation therapy treatment planning

We study a feasibility-seeking problem with percentage violation constraints. These are additional constraints, that are appended to an existing family of constraints, which single out certain subsets of the existing constraints and declare that up to a specified fraction of the number of constraints in each subset is allowed to be violated by up to … Read more

Optimization with learning-informed differential equation constraints and its applications

Inspired by applications in optimal control of semilinear elliptic partial differential equations and physics-integrated imaging, differential equation constrained optimization problems with constituents that are only accessible through data-driven techniques are studied. A particular focus is on the analysis and on numerical methods for problems with machine-learned components. For a rather general context, an error analysis … Read more