Large-Scale Semidefinite Programming via Saddle Point Mirror-Prox Algorithm
In this paper, we first develop “economical” representations for positive semidefinitness of well-structured sparse symmetric matrix. Using the representations, we then reformulate well-structured large-scale semidefinite problems into smooth convex-concave saddle point problems, which can be solved by a Prox-method with efficiency ${\cal O}(\epsilon^{-1})$ developed in \cite{Nem}. Some numerical implementations for large-scale Lovasz capacity and MAXCUT … Read more