Deep Neural Network Structures Solving Variational Inequalities

We propose a novel theoretical framework to investigate deep neural networks using the formalism of proximal fixed point methods for solving variational inequalities. We first show that almost all activation functions used in neural networks are actually proximity operators. This leads to an algorithmic model alternating firmly nonexpansive and linear operators. We derive new results … Read more

Correlation analysis between the vibroacoustic behavior of steering gear and ball nut assemblies in the automotive industry

The increase in quality standards in the automotive industry requires specifications to be propagated across the supply chain, a challenge exacerbated in domains where the quality is subjective. In the daily operations of ThyssenKrupp Presta AG, requirements imposed on the vibroacoustic quality of steering gear need to be passed down to their subcomponents. We quantify … Read more