Relative-Continuity” for Non-Lipschitz Non-Smooth Convex Optimization using Stochastic (or Deterministic) Mirror Descent
The usual approach to developing and analyzing first-order methods for non-smooth (stochastic or deterministic) convex optimization assumes that the objective function is uniformly Lipschitz continuous with parameter $M_f$. However, in many settings the non-differentiable convex function $f(\cdot)$ is not uniformly Lipschitz continuous — for example (i) the classical support vector machine (SVM) problem, (ii) the … Read more