Doubly Nonnegative Relaxations for Quadratic and Polynomial Optimization Problems with Binary and Box Constraints

We propose a doubly nonnegative (DNN) relaxation for polynomial optimization problems (POPs) with binary and box constraints. This work is an extension of the work by Kim, Kojima and Toh in 2016 from quadratic optimization problems (QOPs) to POPs. The dense and sparse DNN relaxations are reduced to a simple conic optimization problem (COP) to … Read more