Extending Exact SDP Relaxations of Quadratically Constrained Quadratic Programs
The semidefinite (SDP) relaxation of a quadratically constrained quadratic program (QCQP) is called exact if it has a rank-$1$ optimal solution corresponding to a QCQP optimal solution. Given an arbitrary QCQP whose SDP relaxation is exact, this paper investigates incorporating additional quadratic inequality constraints while maintaining the exactness of the SDP relaxation of the resulting … Read more