Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets

Moment-sum-of-squares hierarchies of semidefinite programs can be used to approximate the volume of a given compact basic semialgebraic set $K$. The idea consists of approximating from above the indicator function of $K$ with a sequence of polynomials of increasing degree $d$, so that the integrals of these polynomials generate a convergence sequence of upper bounds … Read more

SPECTRA – a Maple library for solving linear matrix inequalities in exact arithmetic

This document briefly describes our freely distributed Maple library {\sc spectra}, for Semidefinite Programming solved Exactly with Computational Tools of Real Algebra. It solves linear matrix inequalities in exact arithmetic and it is targeted to small-size, possibly degenerate problems for which symbolic infeasibility or feasibility certificates are required. ArticleDownload View PDF

Convergence rates of moment-sum-of-squares hierarchies for optimal control problems

We study the convergence rate of moment-sum-of-squares hierarchies of semidefinite programs for optimal control problems with polynomial data. It is known that these hierarchies generate polynomial under-approximations to the value function of the optimal control problem and that these under-approximations converge in the $L^1$ norm to the value function as their degree $d$ tends to … Read more