The best approximation pair problem relative to two subsets in a normed space

In the classical best approximation pair (BAP) problem, one is given two nonempty, closed, convex and disjoint subsets in a finite- or an infinite-dimensional Hilbert space, and the goal is to find a pair of points, each from each subset, which realizes the distance between the subsets. This problem, which has a long history, has … Read more

Frequency regulation with storage: On losses and profits

Low-carbon societies will need to store vast amounts of electricity to balance intermittent generation from wind and solar energy, for example, through frequency regulation. Here, we derive an analytical solution to the decision-making problem of storage operators who sell frequency regulation power to grid operators and trade electricity on day-ahead markets. Mathematically, we treat future … Read more

Solving moment and polynomial optimization problems on Sobolev spaces

Using standard tools of harmonic analysis, we state and solve the problem of moments for positive measures supported on the unit ball of a Sobolev space of multivariate periodic trigonometric functions. We describe outer and inner semidefinite approximations of the cone of Sobolev moments. They are the basic components of an infinite-dimensional moment-sums of squares … Read more

libDIPS — Discretization-Based Semi-Infinite and Bilevel Programming Solvers

We consider several hierarchical optimization programs: (generalized) semi-infinite and existence-constrained semi-infinite programs, minmax, and bilevel programs. Multiple adaptive discretization-based algorithms have been published for these program classes in recent decades. However, rigorous numerical performance comparisons between these algorithms are lacking. Indeed, if numerical comparisons are provided at all, they usually compare a small selection of … Read more

Local Convergence Analysis of an Inexact Trust-Region Method for Nonsmooth Optimization

In [R. J. Baraldi and D. P. Kouri, Mathematical Programming, (2022), pp. 1–40], we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex function and a nonsmooth convex function in Hilbert space—a class of problems that is ubiquitous in data science, learning, optimal control, and inverse problems. This algorithm has demonstrated … Read more

Efficient Proximal Subproblem Solvers for a Nonsmooth Trust-Region Method

In [R. J. Baraldi and D. P. Kouri, Mathematical Programming, (2022), pp. 1-40], we introduced an inexact trust-region algorithm for minimizing the sum of a smooth nonconvex and nonsmooth convex function. The principle expense of this method is in computing a trial iterate that satisfies the so-called fraction of Cauchy decrease condition—a bound that ensures … Read more

Nonlinear Distributionally Robust Optimization

This article focuses on a class of distributionally robust optimization (DRO) problems where, unlike the growing body of the literature, the objective function is potentially non-linear in the distribution. Existing methods to optimize nonlinear functions in probability space use the Frechet derivatives, which present both theoretical and computational challenges. Motivated by this, we propose an … Read more

A PDE-Constrained Generalized Nash Equilibrium Approach for Modeling Gas Markets with Transport

We investigate a class of generalized Nash equilibrium problems (GNEPs) in which the objectives of the individuals are interdependent and the shared constraint consists of a system of partial differential equations. This setup is motivated by the modeling of strategic interactions of competing firms, which explicitly take into account the dynamics of transporting a commodity, … Read more

Optimality-Based Discretization Methods for the Global Optimization of Nonconvex Semi-Infinite Programs

We use sensitivity analysis to design optimality-based discretization (cutting-plane) methods for the global optimization of nonconvex semi-infinite programs (SIPs). We begin by formulating the optimal discretization of SIPs as a max-min problem and propose variants that are more computationally tractable. We then use parametric sensitivity theory to design an efficient method for solving these max-min … Read more

Semi-Infinite Mixed Binary and Disjunctive Programs: Applications to Set-Covering with Infinite Demand Points and Implicit Hitting Set Problems

Sherali and Adams [Discrete Applied Math. 157: 1319-1333, 2009] derived convex hull of semi-infinite mixed binary linear programs (SIMBLPs) using Reformulation-Linearization Technique (RLT). In this paper, we study semi-infinite disjunctive programs (SIDPs — a generalization of SIMBLPs) and present linear programming equivalent and valid inequalities for them. We utilize these results for deriving a hierarchy … Read more