Duality in convex stochastic optimization

This paper studies duality and optimality conditions in general convex stochastic optimization problems introduced by Rockafellar and Wets in \cite{rw76}. We derive an explicit dual problem in terms of two dual variables, one of which is the shadow price of information while the other one gives the marginal cost of a perturbation much like in … Read more

Semi-infinite models for equilibrium selection

In their seminal work `A General Theory of Equilibrium Selection in Games’ (The MIT Press, 1988) Harsanyi and Selten introduce the notion of payoff dominance to explain how players select some solution of a Nash equilibrium problem from a set of nonunique equilibria. We formulate this concept for generalized Nash equilibrium problems, relax payoff dominance … Read more

Optimal Robust Policy for Feature-Based Newsvendor

We study policy optimization for the feature-based newsvendor, which seeks an end-to-end policy that renders an explicit mapping from features to ordering decisions. Unlike existing works that restrict the policies to some parametric class which may suffer from sub-optimality (such as affine class) or lack of interpretability (such as neural networks), we aim to optimize … Read more

A Stochastic Bregman Primal-Dual Splitting Algorithm for Composite Optimization

We study a stochastic first order primal-dual method for solving convex-concave saddle point problems over real reflexive Banach spaces using Bregman divergences and relative smoothness assumptions, in which we allow for stochastic error in the computation of gradient terms within the algorithm. We show ergodic convergence in expectation of the Lagrangian optimality gap with a … Read more

On approximate solutions for robust semi-infinite multi-objective convex symmetric cone optimization

We present approximate solutions for the robust semi-infinite multi-objective convex symmetric cone programming problem. By using the robust optimization approach, we establish an approximate optimality theorem and approximate duality theorems for approximate solutions in convex symmetric cone optimization problem involving infinitely many constraints to be satisfied and multiple objectives to be optimized simultaneously under the … Read more

Barrier Methods Based on Jordan-Hilbert Algebras for Stochastic Optimization in Spin Factors

We present decomposition logarithmic-barrier interior-point methods based on unital Jordan-Hilbert algebras for infinite-dimensional stochastic second-order cone programming problems in spin factors. The results show that the iteration complexity of the proposed algorithms is independent on the choice of Hilbert spaces from which the underlying spin factors are formed, and so it coincides with the best … Read more

Different discretization techniques for solving optimal control problems with control complementarity constraints

There are first-optimize-then-discretize (indirect) and first-discretize-then-optimize (direct) methods to deal with infinite dimensional optimal problems numerically by use of finite element methods. Generally, both discretization techniques lead to different structures. Regarding the indirect method, one derives optimality conditions of the considered infinite dimensional problems in appropriate function spaces firstly and then discretizes them into suitable … Read more

On the Weak and Strong Convergence of a Conceptual Algorithm for Solving Three Operator Monotone Inclusions

In this paper, a conceptual algorithm modifying the forward-backward-half-forward (FBHF) splitting method for solving three operator monotone inclusion problems is investigated. The FBHF splitting method adjusts and improves Tseng’s forward-backward-forward (FBF) split- ting method when the inclusion problem has a third-part operator that is cocoercive. The FBHF method recovers the FBF iteration (when this aforementioned … Read more

Recent Advances in Nonconvex Semi-infinite Programming: Applications and Algorithms

The goal of this literature review is to give an update on the recent developments for semi-infinite programs (SIPs), approximately over the last 20 years. An overview of the different solution approaches and the existing algorithms is given. We focus on deterministic algorithms for SIPs which do not make any convexity assumptions. In particular, we … Read more

Optimal Transport in the Face of Noisy Data

Optimal transport distances are popular and theoretically well understood in the context of data-driven prediction. A flurry of recent work has popularized these distances for data-driven decision-making as well although their merits in this context are far less well understood. This in contrast to the more classical entropic distances which are known to enjoy optimal … Read more