Cutting-planes for optimization of convex functions over nonconvex sets

Motivated by mixed-integer, nonlinear optimization problems, we derive linear inequality characterizations for sets of the form conv{(x, q ) \in R^d × R : q \in Q(x), x \in R^d – int(P )} where Q is convex and differentiable and P \subset R^d . We show that in several cases our characterization leads to polynomial-time … Read more