Bounding the separable rank via polynomial optimization

We investigate questions related to the set $\mathcal{SEP}_d$ consisting of the linear maps $\rho$ acting on $\mathbb{C}^d\otimes \mathbb{C}^d$ that can be written as a convex combination of rank one matrices of the form $xx^*\otimes yy^*$. Such maps are known in quantum information theory as the separable bipartite states, while nonseparable states are called entangled. In … Read more