The structure of conservative gradient fields

The classical Clarke subdifferential alone is inadequate for understanding automatic differentiation in nonsmooth contexts. Instead, we can sometimes rely on enlarged generalized gradients called “conservative fields”, defined through the natural path-wise chain rule: one application is the convergence analysis of gradient-based deep learning algorithms. In the semi-algebraic case, we show that all conservative fields are … Read more

The dimension of semialgebraic subdifferential graphs.

Examples exist of extended-real-valued closed functions on $\R^n$ whose subdifferentials (in the standard, limiting sense) have large graphs. By contrast, if such a function is semi-algebraic, then its subdifferential graph must have everywhere constant local dimension $n$. This result is related to a celebrated theorem of Minty, and surprisingly may fail for the Clarke subdifferential. … Read more