Lipschitz Based Lower Bound Construction for Surrogate Optimization
Bounds play a vital role in guiding optimization algorithms by enhancing convergence, improving solution quality, and quantifying optimality gaps. While Lipschitz-based lower bounds are well-established, their effectiveness is often constrained by the function’s topological properties. To address these limitations, we propose an approach that integrates nonlinear distance metrics with surrogate approximations, yielding more adaptive and … Read more