Closing the Gap: Efficient Algorithms for Discrete Wasserstein Barycenters

The Wasserstein barycenter problem seeks a probability measure that minimizes the weighted average of the Wasserstein distances to a given collection of probability measures. We study the discrete setting, where each measure has finite support — a regime that frequently arises in machine learning and operations research. The discrete Wasserstein barycenter problem is known to … Read more

Projection Robust Wasserstein Barycenters

Collecting and aggregating information from several probability measures or histograms is a fundamental task in machine learning. One of the popular solution methods for this task is to compute the barycenter of the probability measures under the Wasserstein metric. However, approximating the Wasserstein barycenter is numerically challenging because of the curse of dimensionality. This paper … Read more