Machine Learning Algorithms for Assisting Solvers for Constraint Satisfaction Problems

This survey proposes a unifying conceptual framework and taxonomy that systematically integrates Machine Learning (ML) and Reinforcement Learning (RL) with classical paradigms for Constraint Satisfaction and Boolean Satisfiability solving. Unlike prior reviews that focus on individual applications, we organize the literature around solver architecture, linking each major phase—constraint propagation, heuristic decision-making, conflict analysis, and meta-level … Read more

Machine Learning Algorithms for Assisting Solvers for Decision Optimization Problems

Combinatorial decision problems lie at the intersection of Operations Research (OR) and Artificial Intelligence (AI), encompassing structured optimization tasks such as submodular selection, dynamic programming, planning, and scheduling. These problems exhibit exponential growth in decision complexity, driven by interdependent choices coupled through logical, temporal, and resource constraints.  Classical optimization frameworks—including integer programming, submodular optimization, and … Read more

Closing the Gap: Efficient Algorithms for Discrete Wasserstein Barycenters

The Wasserstein barycenter problem seeks a probability measure that minimizes the weighted average of the Wasserstein distances to a given collection of probability measures. We study the discrete setting, where each measure has finite support — a regime that frequently arises in machine learning and operations research. The discrete Wasserstein barycenter problem is known to … Read more

Optimizing pricing strategies through learning the market structure

This study explores the integration of market structure learning into pricing strategies to maximize revenue in e-commerce and retail environments. We consider the problem of determining the revenue maximizing price of a single product in a market of heterogeneous consumers segmented by their product valuations; and analyze the pricing strategies for varying levels of prior … Read more

Adaptive Conditional Gradient Descent

Selecting an effective step-size is a fundamental challenge in first-order optimization, especially for problems with non-Euclidean geometries. This paper presents a novel adaptive step-size strategy for optimization algorithms that rely on linear minimization oracles, as used in the Conditional Gradient or non-Euclidean Normalized Steepest Descent algorithms. Using a simple heuristic to estimate a local Lipschitz … Read more

Consolidation in Crowdshipping with Scheduled Transfer Lines: A Surrogate-Based Network Design Framework

Abstract: Crowdshipping has gained attention as an emerging delivery model thanks to advantages such as flexibility and an asset-light structure. Yet, it chronically suffers from a lackof mechanisms to create and exploit consolidation opportunities, limiting its efficiency and scalability. This work contributes to the literature in two ways: first, by introducing a novel consolidation concept … Read more

Progressively Sampled Equality-Constrained Optimization

An algorithm is proposed, analyzed, and tested for solving continuous nonlinear-equality-constrained optimization problems where the constraints are defined by an expectation or an average over a large (finite) number of terms. The main idea of the algorithm is to solve a sequence of equality-constrained problems, each involving a finite sample of constraint-function terms, over which … Read more

Machine Learning Algorithms for Improving Black Box Optimization Solvers

Black-box optimization (BBO) addresses problems where objectives are accessible only through costly queries without gradients or explicit structure. Classical derivative-free methods—line search, direct search, and model-based solvers such as Bayesian optimization—form the backbone of BBO, yet often struggle in high-dimensional, noisy, or mixed-integer settings. Recent advances use machine learning (ML) and reinforcement learning (RL) to … Read more

New insights and algorithms for optimal diagonal preconditioning

Preconditioning (scaling) is essential in many areas of mathematics, and in particular in optimization. In this work, we study the problem of finding an optimal diagonal preconditioner. We focus on minimizing two different notions of condition number: the classical, worst-case type, \(\kappa\)-condition number, and the more averaging motivated \(\omega\)-condition number. We provide affine based pseudoconvex … Read more