On Supportedness-Promoting Image Space Transformations in Multiobjective Optimization

We study the supportedness of nondominated points of multiobjective optimization problems, that is, whether they can be obtained via weighted sum scalarization. One key question is how supported points behave under an efficiency-preserving transformation of the original problem. Under a differentiability assumption, we characterize the transformations that preserve both efficiency and supportedness as the component-wise … Read more

Integral Global Optimality Conditions and an Algorithm for Multiobjective Problems

In this work, we propose integral global optimality conditions for multiobjective problems not necessarily differentiable. The integral characterization, already known for single objective problems, are extended to multiobjective problems by weighted sum and Chebyshev weighted scalarizations. Using this last scalarization, we propose an algorithm for obtaining an approximation of the weak Pareto front whose effectiveness … Read more