On Cone of Nonsymmetric Positive Semidefinite Matrices

In this paper, we analyze and characterize the cone of nonsymmetric positive semidefinite matrices (NS-psd). Firstly, we study basic properties of the geometry of the NS-psd cone and show that it is a hyperbolic but not homogeneous cone. Secondly, we prove that the NS-psd cone is a maximal convex subcone of $P_0$-matrix cone which is not convex. But the interior of the NS-psd cone is not a maximal convex subcone of $P$-matrix cone. As the byproducts, some new sufficient and necessary conditions for a nonsymmetric matrix to be positive semidefinite are given. Finally, we present some properties of metric projection onto the NS-psd cone.

Article

Download

View PDF