The cone of Completely Positive (CP) matrices can be used to exactly formulate a variety of NP-Hard optimization problems. A tractable relaxation for CP matrices is provided by the cone of Doubly Nonnegative (DNN) matrices; that is, matrices that are both positive semidefinite and componentwise nonnegative. A natural problem in the optimization setting is then to separate a given DNN but non-CP matrix from the cone of CP matrices. We describe two different constructions for such a separation that apply to 5×5 matrices that are DNN but non-CP. We also describe a generalization that applies to larger DNN but non-CP matrices having block structure. Computational results illustrate the applicability of these separation procedures to generate improved bounds on difficult problems.
Citation
Working paper, Dept. of Management Sciences, University of Iowa, Iowa City IA, March 2010.