We investigate sample average approximation of a general class of one-stage stochastic mathematical programs with equilibrium constraints. By using graphical convergence of unbounded set-valued mappings, we demonstrate almost sure convergence of a sequence of stationary points of sample average approximation problems to their true counterparts as the sample size increases. In particular we show the convergence of M(Mordukhovich)-stationary point and C(Clarke)-stationary point of the sample average approximation problem to those of the true problem. The research complements the existing work in the literature by considering a general constraint to be represented by a stochastic generalized equation and exploiting graphical convergence of coderivative mappings.