Up to orthogonal transformation, a solid closed convex cone $K$ in the Euclidean space $\mathbb{R}^{n+1}$ is the epigraph of a nonnegative sublinear function $f:\mathbb{R}^n\to \mathbb{R}$. This work explores the link between the geometric properties of $K$ and the analytic properties of $f$.

## Citation

JOURNAL OF CONVEX ANALYSIS, 2011, in press.