Axial symmetry indices for convex cones: axiomatic formalism and applications

We address the issue of measuring the degree of axial symmetry of a convex cone. By following an axiomatic approach, we introduce and explore the concept of axial symmetry index. This concept is illustrated with the help of several interesting examples. By way of application, we establish a conic version of the Blekherman inequality concerning … Read more

Measuring axial symmetry in convex cones

The problem of measuring the degree of central symmetry of a convex body has been treated by various authors since the early twentieth century. This work addresses the issue of measuring the degree of axial symmetry of a convex cone. Passing from central symmetry in convex bodies to axial symmetry in convex cones is not … Read more

On measures of size for convex cones

By using an axiomatic approach we formalize the concept of size index for closed convex cones in the Euclidean space $\mathbb{R}^n$. We review a dozen of size indices disseminated through the literature, commenting on the advantages and disadvantages of each choice. CitationTo appear in Journal of Convex Analysis (2015) ArticleDownload View PDF

Conic separation of finite sets:The homogeneous case

This work addresses the issue of separating two finite sets in $\mathbb{R}^n $ by means of a suitable revolution cone $$ \Gamma (z,y,s)= \{x \in \mathbb{R}^n : s\,\Vert x-z\Vert – y^T(x-z)=0\}.$$ The specific challenge at hand is to determine the aperture coefficient $s$, the axis $y$, and the apex $z$ of the cone. These parameters … Read more

Conic separation of finite sets: The non-homogeneous case

We address the issue of separating two finite sets in $\mathbb{R}^n $ by means of a suitable revolution cone $$ \Gamma (z,y,s)= \{x \in \mathbb{R}^n :\, s\,\Vert x-z\Vert – y^T(x-z)=0\}.$$ One has to select the aperture coefficient $s$, the axis $y$, and the apex $z$ in such a way as to meet certain optimal separation … Read more

Epigraphical cones I

Up to orthogonal transformation, a solid closed convex cone $K$ in the Euclidean space $\mathbb{R}^{n+1}$ is the epigraph of a nonnegative sublinear function $f:\mathbb{R}^n\to \mathbb{R}$. This work explores the link between the geometric properties of $K$ and the analytic properties of $f$. CitationJOURNAL OF CONVEX ANALYSIS, 2011, in press. ArticleDownload View PDF

Epigraphical cones II

This is the second part of a work devoted to the theory of epigraphical cones and their applications. A convex cone $K$ in the Euclidean space $\mathbb{R}^{n+1}$ is an epigraphical cone if it can be represented as epigraph of a nonnegative sublinear function $f: \mathbb{R}^n\to \mathbb{R}$. We explore the link between the geometric properties of … Read more