We propose a scenario decomposition algorithm for stochastic 0-1 programs. The algorithm recovers an optimal solution by iteratively exploring and cutting-off candidate solutions obtained from solving scenario subproblems. The scheme is applicable to quite general problem structures and can be implemented in a distributed framework. Illustrative computational results on standard two-stage stochastic integer programming and nonlinear stochastic integer programming test problems are presented.
Citation
Submitted for publication.
Article
View A scenario decomposition algorithm for 0-1 stochastic programs