An optimal subgradient algorithm for large-scale convex optimization in simple domains

This paper shows that the optimal subgradient algorithm, OSGA, proposed in \cite{NeuO} can be used for solving structured large-scale convex constrained optimization problems. Only first-order information is required, and the optimal complexity bounds for both smooth and nonsmooth problems are attained. More specifically, we consider two classes of problems: (i) a convex objective with a simple closed convex domain, where the orthogonal projection on this feasible domain is efficiently available; (ii) a convex objective with a simple convex functional constraint. If we equip OSGA with an appropriate prox-function, the OSGA subproblem can be solved either in a closed form or by a simple iterative scheme, which is especially important for large-scale problems. We report numerical results for some applications to show the efficiency of the proposed scheme. A software package implementing OSGA for above domains is available.

Citation

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria, 2015

Article

Download

View PDF