Accelerated first-order methods for large-scale convex minimization

This paper discusses several (sub)gradient methods attaining the optimal complexity for smooth problems with Lipschitz continuous gradients, nonsmooth problems with bounded variation of subgradients, weakly smooth problems with H\”older continuous gradients. The proposed schemes are optimal for smooth strongly convex problems with Lipschitz continuous gradients and optimal up to a logarithmic factor for nonsmooth problems … Read more

New results on subgradient methods for strongly convex optimization problems with a unified analysis

We develop subgradient- and gradient-based methods for minimizing strongly convex functions under a notion which generalizes the standard Euclidean strong convexity. We propose a unifying framework for subgradient methods which yields two kinds of methods, namely, the Proximal Gradient Method (PGM) and the Conditional Gradient Method (CGM), unifying several existing methods. The unifying framework provides … Read more

An optimal subgradient algorithm for large-scale convex optimization in simple domains

This paper shows that the optimal subgradient algorithm, OSGA, proposed in \cite{NeuO} can be used for solving structured large-scale convex constrained optimization problems. Only first-order information is required, and the optimal complexity bounds for both smooth and nonsmooth problems are attained. More specifically, we consider two classes of problems: (i) a convex objective with a … Read more

Inertial primal-dual algorithms for structured convex optimization

The primal-dual algorithm recently proposed by Chambolle \& Pock (abbreviated as CPA) for structured convex optimization is very efficient and popular. It was shown by Chambolle \& Pock in \cite{CP11} and also by Shefi \& Teboulle in \cite{ST14} that CPA and variants are closely related to preconditioned versions of the popular alternating direction method of … Read more

A Family of Subgradient-Based Methods for Convex Optimization Problems in a Unifying Framework

We propose a new family of subgradient- and gradient-based methods which converges with optimal complexity for convex optimization problems whose feasible region is simple enough. This includes cases where the objective function is non-smooth, smooth, have composite/saddle structure, or are given by an inexact oracle model. We unified the way of constructing the subproblems which … Read more

Optimal subgradient algorithms with application to large-scale linear inverse problems

This study addresses some algorithms for solving structured unconstrained convex optimization problems using first-order information where the underlying function includes high-dimensional data. The primary aim is to develop an implementable algorithmic framework for solving problems with multi-term composite objective functions involving linear mappings using the optimal subgradient algorithm, OSGA, proposed by {\sc Neumaier} in \cite{NeuO}. … Read more