The incomplete hub location problem with and without hop-constraints is modeled using a Leontief substitution system approach. The Leontief formalism provides a set of important theoretical properties and delivers formulations with tight linear bounds that can explicitly incorporate hop constraints for each origin-destination pair of demands. Furthermore, the proposed formulations are amenable to a Benders decomposition technique which can solve large scale test instances. The performance of the devised algorithm is primarily due to a new general scheme for separating Benders feasibility cuts. This scheme relies on a stabilization step that is directly responsible for the solution of instances up to 80 nodes.