An efficient solution methodology for the airport slot allocation problem with preprocessing and column generation

Airport coordination is a demand control mechanism that maximizes the use of existing infrastructure at congested airports. Aircraft operators submit a list of regular flights that they wish to operate over a five to seven-month period and a designated coordinator is responsible for allocating the available airport slots, which represent the permission to operate a … Read more

Fleet & tail assignment under uncertainty

Airlines solve many different optimization problems and combine the resulting solutions to ensure smooth, minimum-cost operations. Crucial problems are the Fleet Assignment, which assigns aircraft types to flights of a given schedule, and the Tail Assignment, which determines individual flight sequences to be performed by single aircraft. In order to find a cost-optimal solution, many … Read more

A novel decomposition approach for holistic airline optimization

Airlines face many different planning processes until the day of operation. These include Fleet Assignment, Tail Assignment and the associated control of ground processes between consecutive flights, called Turnaround Handling. All of these planning problems have in common that they often need to be reoptimized on the day of execution due to unplanned events. In … Read more

Fleet planning under demand uncertainty: a reinforcement learning approach

This work proposes a model-free reinforcement learning approach to learn a long-term fleet planning problem subjected to air-travel demand uncertainty. The aim is to develop a dynamic fleet policy that adapts over time by intermediate assessments of the states. A Deep Q-network is trained to estimate the optimal fleet decisions based on the airline and … Read more

Mixed-Integer Reformulations of Resource-Constrained Two-Stage Assignment Problems

The running time for solving a mixed-integer linear optimization problem (MIP) strongly depends on the number of its integral variables. Bader et al. [Math. Progr. 169 (2018) 565–584] equivalently reformulate an integer program into an MIP that contains a reduced number of integrality constraints, when compared to the original model. Generalizing the concept of totally … Read more

Power to Air-transportation via Hydrogen

This paper proposes a framework to analyze the concept of power to hydrogen (P2H) for fueling the next generation of aircraft. The impact of introducing new P2H loads is investigated from different aspects namely, cost, carbon emission, and wind curtailment. The newly introduced electric load is calculated based on the idea of replacing the busiest … Read more

A rolling-horizon approach for multi-period optimization

Mathematical optimization problems including a time dimension abound. For example, logistics, process optimization and production planning tasks must often be optimized for a range of time periods. Usually, these problems incorporating time structure are very large and cannot be solved to global optimality by modern solvers within a reasonable period of time. Therefore, the so-called … Read more

Interdependence and Integration among Components of the Airline Scheduling Process: A State-of-the-Art Review

Over the last few decades, the Airline Scheduling Process (ASP) has received an unprecedented attention from airliners and operations research society. Conventionally, the Airline Scheduling Process is decomposed into four sub-problems namely-Schedule Generation, Fleet Assignment, aircraft Routing, and Crew Scheduling which are solved sequentially in order to incorporate tractability and feasibility in the overall process. … Read more

Dynamic Design Of Reserve Crew Duties For Long Haul Airline Crew

Airlines need crew to operate their flights. In case of crew unavailability, for example due to illness, the airline often uses reserve crew to still be able to operate the flight. In this paper, we apply a simulation-based optimization method to determine how much and on which days reserve crew needs to be scheduled. This … Read more

Dynamic optimization for airline maintenance operations

The occurrence of unexpected aircraft maintenance tasks can produce expensive changes in an airline’s operation. When it comes to critical tasks, it might even cancel programmed flights. Despite of it, the challenge of scheduling aircraft maintenance operations under uncertainty has received limited attention in the scientific literature. We study a dynamic airline maintenance scheduling problem, … Read more