We provide an exact deterministic reformulation for data-driven chance constrained programs over Wasserstein balls. For individual chance constraints as well as joint chance constraints with right-hand side uncertainty, our reformulation amounts to a mixed-integer conic program. In the special case of a Wasserstein ball with the $1$-norm or the $\infty$-norm, the cone is the nonnegative orthant, and the chance constrained program can be reformulated as a mixed-integer linear program. Our reformulation compares favourably to several state-of-the-art data-driven optimization schemes in our numerical experiments.