On Approximations of Data-Driven Chance Constrained Programs over Wasserstein Balls

Distributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affecting the safety condition(s) is only known to belong to some ambiguity set. We study two popular approximation schemes for distributionally robust … Read more

Wasserstein Logistic Regression with Mixed Features

Recent work has leveraged the popular distributionally robust optimization paradigm to combat overfitting in classical logistic regression. While the resulting classification scheme displays a promising performance in numerical experiments, it is inherently limited to numerical features. In this paper, we show that distributionally robust logistic regression with mixed (i.e., numerical and categorical) features, despite amounting … Read more

Conditional Distributionally Robust Functionals

Risk measures incorporate a conservative or risk averse perspective in decisionmaking under uncertainty. Taking a variety of models for the potential outcomes into account, the distributionally robust decision is the most conservative decision among the decisions available. This paper investigates different versions of conditional risk measures and distributionally robust functionals in a multistage setting. The … Read more

Distributionally Robust Chance Constrained $p$-Hub Center Problem

The $p$-hub center problem is a fundamental model for the strategic design of hub location. It aims at constructing $p$ fully interconnected hubs and links from nodes to hubs so that the longest path between any two nodes is minimized. Existing literature on the $p$-hub center problem under uncertainty often assumes a joint distribution of … Read more

Optimization-based Scenario Reduction for Data-Driven Two-stage Stochastic Optimization

We propose a novel, optimization-based method that takes into account the objective and problem structure for reducing the number of scenarios, m, needed for solving two-stage stochastic optimization problems. We develop a corresponding convex optimization-based algorithm, and show that as the number of scenarios increase, the proposed method recovers the SAA solution. We report computational … Read more

Bounds for Multistage Mixed-Integer Distributionally Robust Optimization

Multistage mixed-integer distributionally robust optimization (DRO) forms a class of extremely challenging problems since their size grows exponentially with the number of stages. One way to model the uncertainty in multistage DRO is by creating sets of conditional distributions (the so-called conditional ambiguity sets) on a finite scenario tree and requiring that such distributions remain … Read more

Globalized Distributionally Robust Counterpart: Model, Reformulation, and Applications

We extend the notion of globalized robustness to consider distributional information beyond the support of the ambiguous probability distribution. We propose the globalized distributionally robust counterpart that disallows any (resp., allows limited) constraint violation for distributions residing (resp., not residing) in the ambiguity set. By varying its inputs, our proposal recovers several existing perceptions of … Read more

A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance

The Wasserstein distance has become increasingly important in machine learning and deep learning. Despite its popularity, the Wasserstein distance is hard to approximate because of the curse of dimensionality. A recently proposed approach to alleviate the curse of dimensionality is to project the sampled data from the high dimensional probability distribution onto a lower-dimensional subspace, … Read more

Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical Solution

Semi-discrete optimal transport problems, which evaluate the Wasserstein distance between a discrete and a generic (possibly non-discrete) probability measure, are believed to be computationally hard. Even though such problems are ubiquitous in statistics, machine learning and computer vision, however, this perception has not yet received a theoretical justification. To fill this gap, we prove that … Read more

Residuals-based distributionally robust optimization with covariate information

We consider data-driven approaches that integrate a machine learning prediction model within distributionally robust optimization (DRO) given limited joint observations of uncertain parameters and covariates. Our framework is flexible in the sense that it can accommodate a variety of regression setups and DRO ambiguity sets. We investigate asymptotic and finite sample properties of solutions obtained … Read more