Distributionally Robust Optimization

Distributionally robust optimization (DRO) studies decision problems under uncertainty where the probability distribution governing the uncertain problem parameters is itself uncertain. A key component of any DRO model is its ambiguity set, that is, a family of probability distributions consistent with any available structural or statistical information. DRO seeks decisions that perform best under the … Read more

Optimism in the Face of Ambiguity Principle for Multi-Armed Bandits

Follow-The-Regularized-Leader (FTRL) algorithms often enjoy optimal regret for adversarial as well as stochastic bandit problems and allow for a streamlined analysis. However, FTRL algorithms require the solution of an optimization problem in every iteration and are thus computationally challenging. In contrast, Follow-The-Perturbed-Leader (FTPL) algorithms achieve computational efficiency by perturbing the estimates of the rewards of … Read more

Wasserstein Distributionally Robust Optimization with Heterogeneous Data Sources

We study decision problems under uncertainty, where the decision-maker has access to K data sources that carry biased information about the underlying risk factors. The biases are measured by the mismatch between the risk factor distribution and the K data-generating distributions with respect to an optimal transport (OT) distance. In this situation the decision-maker can … Read more

A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set

The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically – without compelling theoretical justification – or optimally in view of restrictive distributional assumptions. In this paper, we propose a principled approach to construct covariance … Read more

Frequency regulation with storage: On losses and profits

Low-carbon societies will need to store vast amounts of electricity to balance intermittent generation from wind and solar energy, for example, through frequency regulation. Here, we derive an analytical solution to the decision-making problem of storage operators who sell frequency regulation power to grid operators and trade electricity on day-ahead markets. Mathematically, we treat future … Read more

End-to-End Learning for Stochastic Optimization: A Bayesian Perspective

We develop a principled approach to end-to-end learning in stochastic optimization. First, we show that the standard end-to-end learning algorithm admits a Bayesian interpretation and trains a posterior Bayes action map. Building on the insights of this analysis, we then propose new end-to-end learning algorithms for training decision maps that output solutions of empirical risk … Read more

Distributionally Robust Linear Quadratic Control

Linear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that is studied in various fields such as engineering, computer science, economics, and neuroscience. It involves controlling a system with linear dynamics and imperfect observations, subject to additive noise, with the goal of minimizing a quadratic cost function for the state and control variables. In this work, … Read more

Distributionally Robust Optimal Allocation with Costly Verification

We consider the mechanism design problem of a principal allocating a single good to one of several agents without monetary transfers. Each agent desires the good and uses it to create value for the principal. We designate this value as the agent’s private type. Even though the principal does not know the agents’ types, she … Read more

On Approximations of Data-Driven Chance Constrained Programs over Wasserstein Balls

Distributionally robust chance constrained programs minimize a deterministic cost function subject to the satisfaction of one or more safety conditions with high probability, given that the probability distribution of the uncertain problem parameters affecting the safety condition(s) is only known to belong to some ambiguity set. We study two popular approximation schemes for distributionally robust … Read more

Metrizing Fairness

We study supervised learning problems for predicting properties of individuals who belong to one of two demographic groups, and we seek predictors that are fair according to statistical parity. This means that the distributions of the predictions within the two groups should be close with respect to the Kolmogorov distance, and fairness is achieved by … Read more