Iteration-complexity of an inexact proximal accelerated augmented Lagrangian method for solving linearly constrained smooth nonconvex composite optimization problems

This paper proposes and establishes the iteration-complexity of an inexact proximal accelerated augmented Lagrangian (IPAAL) method for solving linearly constrained smooth nonconvex composite optimization problems. Each IPAAL iteration consists of inexactly solving a proximal augmented Lagrangian subproblem by an accelerated composite gradient (ACG) method followed by a suitable Lagrange multiplier update. It is shown that IPAAL generates an approximate stationary solution in at most ${\cal O}(\log(1/\rho)/\rho^{3})$ ACG iterations, where $\rho>0$ is the given tolerance. It is also shown that the previous complexity bound can be sharpened to ${\cal O}(\log(1/\rho)/\rho^{2.5})$ under additional mildly stronger assumptions. The above bounds are derived assuming that the initial point is neither feasible nor the domain of the composite term of the objective function is bounded. Some preliminary numerical results are presented to illustrate the performance of the IPAAL method.

Article

Download

View Iteration-complexity of an inexact proximal accelerated augmented Lagrangian method for solving linearly constrained smooth nonconvex composite optimization problems