Gas Transport Network Optimization: Mixed-Integer Nonlinear Models

Although modern societies strive towards energy systems that are entirely based on renewable energy carriers, natural gas is still one of the most important energy sources. This became even more obvious in Europe with Russia's 2022 war against the Ukraine and the resulting stop of gas supplies from Russia. Besides that it is very important to use this scarce resource efficiently. To this end, it is also of significant relevance that its transport is organized in the most efficient, i.e., cost- or energy-efficient, way. The corresponding mathematical optimization models have gained a lot of attention in the last decades in different optimization communities. These models are highly nonlinear mixed-integer problems that are constrained by algebraic constraints and partial differential equations (PDEs), which usually leads to models that are not tractable. Hence, simplifications have to be made and in this chapter, we present a commonly accepted finite-dimensional stationary model, i.e., a model in which the steady-state solutions of the PDEs are approximated with algebraic constraints. For more details about the involved PDEs and the treatment of transient descriptions we refer to Hante and Schmidt (2023). The presented finite-dimensional as well as mixed-integer nonlinear and nonconvex model is still highly challenging if it needs to be solved for real-world gas transport networks. Hence, we also review some classic solution approaches from the literature.



View Gas Transport Network Optimization: Mixed-Integer Nonlinear Models