Robust support vector machines via conic optimization

We consider the problem of learning support vector machines robust to uncertainty. It has been established in the literature that typical loss functions, including the hinge loss, are sensible to data perturbations and outliers, thus performing poorly in the setting considered. In contrast, using the 0-1 loss or a suitable non-convex approximation results in robust … Read more

Test Instances for Multiobjective Mixed-Integer Nonlinear Optimization

A suitable set of test instances, also known as benchmark problems, is a key ingredient to systematically evaluate numerical solution algorithms for a given class of optimization problems. While in recent years several solution algorithms for the class of multiobjective mixed-integer nonlinear optimization problems have been proposed, there is a lack of a well-established set … Read more

Gas Transport Network Optimization: Mixed-Integer Nonlinear Models

Although modern societies strive towards energy systems that are entirely based on renewable energy carriers, natural gas is still one of the most important energy sources. This became even more obvious in Europe with Russia’s 2022 war against the Ukraine and the resulting stop of gas supplies from Russia. Besides that it is very important … Read more

A Consensus-Based Alternating Direction Method for Mixed-Integer and PDE-Constrained Gas Transport Problems

We consider dynamic gas transport optimization problems, which lead to large-scale and nonconvex mixed-integer nonlinear optimization problems (MINLPs) on graphs. Usually, the resulting instances are too challenging to be solved by state-of-the-art MINLP solvers. In this paper, we use graph decompositions to obtain multiple optimization problems on smaller blocks, which can be solved in parallel … Read more

An Exact Method for Nonlinear Network Flow Interdiction Problems

We study network flow interdiction problems with nonlinear and nonconvex flow models. The resulting model is a max-min bilevel optimization problem in which the follower’s problem is nonlinear and nonconvex. In this game, the leader attacks a limited number of arcs with the goal to maximize the load shed and the follower aims at minimizing … Read more

A Successive Linear Relaxation Method for MINLPs with Multivariate Lipschitz Continuous Nonlinearities

We present a novel method for mixed-integer optimization problems with multivariate and Lipschitz continuous nonlinearities. In particular, we do not assume that the nonlinear constraints are explicitly given but that we can only evaluate them and that we know their global Lipschitz constants. The algorithm is a successive linear relaxation method in which we alternate … Read more

Mixed-Integer Programming Techniques for the Minimum Sum-of-Squares Clustering Problem

The minimum sum-of-squares clustering problem is a very important problem in data mining and machine learning with very many applications in, e.g., medicine or social sciences. However, it is known to be NP-hard in all relevant cases and to be notoriously hard to be solved to global optimality in practice. In this paper, we develop … Read more

Compact extended formulations for low-rank functions with indicator variables

We study the mixed-integer epigraph of a special class of convex functions with non-convex indicator constraints, which are often used to impose logical constraints on the support of the solutions. The class of functions we consider are defined as compositions of low-dimensional nonlinear functions with affine functions Extended formulations describing the convex hull of such … Read more