A polynomial matrix inequality is a statement that a symmetric polynomial matrix is positive semidefinite over a given constraint set. Polynomial matrix optimization concerns minimizing the smallest eigenvalue of a symmetric polynomial matrix subject to a tuple of polynomial matrix inequalities. This work explores the use of sparsity methods in reducing the complexity of sum-of-squares based methods in verifying polynomial matrix inequalities or solving polynomial matrix optimization. In the unconstrained setting, Newton polytopes can be employed to sparsify the monomial basis, resulting in smaller semidefinite programs. In the general setting, we show how to exploit different types of sparsity (term sparsity, correlative sparsity, matrix sparsity) encoded in polynomial matrices to derive sparse semidefinite programming relaxations for polynomial matrix optimization. For term sparsity, one intriguing phenomenon is that the related block structures do not necessarily converge to the one determined by sign symmetries, which is significantly distinguished from the scalar case. For correlative sparsity, unlike the scalar case, we provide a counterexample showing that asymptotic convergence does not hold under the Archimedean condition and the running intersection property. By employing the theory of matrix-valued measures, we establish several results on detecting global optimality and retrieving optimal solutions under correlative sparsity. The effectiveness of sparsity methods on reducing computational complexity is demonstrated on various examples of polynomial matrix optimization.
Article
Loading...