MDP modeling for multi-stage stochastic programs

We study a class of multi-stage stochastic programs, which incorporate modeling features from Markov decision processes (MDPs). This class includes structured MDPs with continuous state and action spaces. We extend policy graphs to include decision-dependent uncertainty for one-step transition probabilities as well as a limited form of statistical learning. We focus on the expressiveness of our modeling approach, illustrating ideas with a series of examples of increasing complexity. As a solution method, we develop new variants of stochastic dual dynamic programming, including approximations to handle non-convexities.

Article

Download

View PDF