Probing-Enhanced Stochastic Programming

\(\) We consider a two-stage stochastic decision problem where the decision-maker has the opportunity to obtain information about the distribution of the random variables $\xi$ that appear in the problem through a set of discrete actions that we refer to as probing. Probing components of a random vector $\eta$ that is jointly-distributed with $\xi$ allows … Read more

Distributionally Robust Optimization with Decision-Dependent Polyhedral Ambiguity

We consider a two-stage stochastic program with continuous recourse, where the distribution of the random parameters depends on the decisions. Assuming a finite sample space, we study a distributionally robust approach to this problem, where the decision-dependent distributional ambiguity is modeled with a polyhedral ambiguity set. We consider cases where the recourse function and the … Read more

Distributionally Risk-Receptive and Robust Multistage Stochastic Integer Programs and Two-player Interdiction Games with(out) Decision-Dependent Uncertainty

In this paper, we study distributionally risk-receptive and distributionally robust (or risk-averse) multistage stochastic mixed-integer programs (denoted by DRR- and DRA-MSIPs). These frameworks are useful for optimization problems under uncertainty where the focus is on analyzing outcomes based on multiple decision-makers’ differing perspectives, such as interdiction problems that are attacker-defender games having non-cooperative players. We … Read more

Robust Optimization with Continuous Decision-Dependent Uncertainty with Applications in Demand Response Portfolio Management

We consider a robust optimization problem with continuous decision-dependent uncertainty (RO-CDDU), which has two new features: an uncertainty set linearly dependent on continuous decision variables and a convex piecewise-linear objective function. We prove that RO-CDDU is strongly NP-hard in general and reformulate it into an equivalent mixed-integer nonlinear program (MINLP) with a decomposable structure to … Read more

Two-Stage Robust Optimization with Decision Dependent Uncertainty

The type of decision dependent uncertainties (DDUs) imposes a great challenge in decision making, while existing methodologies are not sufficient to support many real practices. In this paper, we present a systematic study to handle this challenge in two-stage robust optimization~(RO). Our main contributions include three sophisticated variants of column-and-constraint generation method to exactly compute … Read more

ROC++: Robust Optimization in C++

Over the last two decades, robust optimization has emerged as a popular means to address decision-making problems affected by uncertainty. This includes single- and multi-stage problems involving real-valued and/or binary decisions, and affected by exogenous (decision-independent) and/or endogenous (decision-dependent) uncertain parameters. Robust optimization techniques rely on duality theory potentially augmented with approximations to transform a … Read more

Robust Software Partitioning with Multiple Instantiation

The purpose of software partitioning is to assign code segments of a given computer program to a range of execution locations such as general purpose processors or specialist hardware components. These execution locations differ in speed, communication characteristics, and in size. In particular, hardware components offering high speed tend to accommodate only few code segments. … Read more