A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators

In this paper we propose two different primal-dual splitting algorithms for solving inclusions involving mixtures of composite and parallel-sum type monotone operators which rely on an inexact Douglas-Rachford splitting method, however applied in different underlying Hilbert spaces. Most importantly, the algorithms allow to process the bounded linear operators and the set-valued operators occurring in the formulation of the monotone inclusion problem separately at each iteration, the latter being individually accessed via their resolvents. The performances of the primal-dual algorithms are emphasized via some numerical experiments on location and image deblurring problems.

Article

Download

View A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators