Primal-dual extrapolation methods for monotone inclusions under local Lipschitz continuity with applications to variational inequality, conic constrained saddle point, and convex conic optimization problems

In this paper we consider a class of structured monotone inclusion (MI) problems that consist of finding a zero in the sum of two monotone operators, in which one is maximal monotone while another is locally Lipschitz continuous. In particular, we first propose a primal-dual extrapolation (PDE) method for solving a structured strongly MI problem … Read more

Asynchronous Block-Iterative Primal-Dual Decomposition Methods for Monotone Inclusions

We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in … Read more

Convergence Rates with Inexact Nonexpansive Operators

In this paper, we present a convergence rate analysis for the inexact Krasnosel’ski{\u{\i}}-Mann iteration built from nonexpansive operators. Our results include two main parts: we first establish global pointwise and ergodic iteration-complexity bounds, and then, under a metric subregularity assumption, we establish local linear convergence for the distance of the iterates to the set of … Read more

A Douglas-Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators

In this paper we propose two different primal-dual splitting algorithms for solving inclusions involving mixtures of composite and parallel-sum type monotone operators which rely on an inexact Douglas-Rachford splitting method, however applied in different underlying Hilbert spaces. Most importantly, the algorithms allow to process the bounded linear operators and the set-valued operators occurring in the … Read more

A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms

We propose a new first-order splitting algorithm for solving jointly the primal and dual formulations of large-scale convex minimization problems involving the sum of a smooth function with Lipschitzian gradient, a nonsmooth proximable function, and linear composite functions. This is a full splitting approach in the sense that the gradient and the linear operators involved … Read more

A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality

The principle underlying this paper is the basic observation that the problem of simultaneously solving a large class of composite monotone inclusions and their duals can be reduced to that of finding a zero of the sum of a maximally monotone operator and a linear skew-adjoint operator. An algorithmic framework is developed for solving this … Read more

Iteration-complexity of block-decomposition algorithms and the alternating minimization augmented Lagrangian method

In this paper, we consider the monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal monotone operator with a separable two-block structure and introduce a framework of block-decomposition prox-type algorithms for solving it which allows for each one of the single-block proximal subproblems to be solved in an … Read more