Smoothie: Mixing the strongest MIP solvers to solve hard MIP instances on supercomputers – Phase I development

Mixed-Integer Linear Programming (MIP) is applicable to such a wide range of real-world decision problems that the competition for the best code to solve such problems has lead to tremendous progress over the last decades. While current solvers can solve some of the problems that seemed completely out-of-reach just 10 years ago, there are always relevant MIP problems that currently cannot be solved. With the Smoothie solver we intend to solve extremely hard MIP problems by building on the many years that went into the development of several state-of-the-art MIP solvers and by utilizing some of the largest computing resources available. The high-level task parallelization framework UG (Ubiquity Generator) is used and extended by Smoothie to build a solver that uses large-scale parallelization to distribute the solution of a single MIP on a shared- or distributed-memory computing infrastructure, thereby employing several established MIP solvers simultaneously. For the first development phase, which is the topic of this report, both FICO Xpress and Gurobi are used in concurrent mode on a single machine, while information on incumbent solutions and explored branch-and-bound subtrees is exchanged. A dynamic restarting mechanism ensures that solver configurations are selected that promise most suitable for the MIP to be solved. We report on initial findings using this early version of Smoothie on unsolved problems from MIPLIB 2017.

Article

Download

View PDF