Spectral bounds for the independence ratio and the chromatic number of an operator

We define the independence ratio and the chromatic number for bounded, self-adjoint operators on an L^2-space by extending the definitions for the adjacency matrix of finite graphs. In analogy to the Hoffman bounds for finite graphs, we give bounds for these parameters in terms of the numerical range of the operator. This provides a theoretical … Read more

Invariant semidefinite programs

In the last years many results in the area of semidefinite programming were obtained for invariant (finite dimensional, or infinite dimensional) semidefinite programs – SDPs which have symmetry. This was done for a variety of problems and applications. The purpose of this handbook chapter is to give the reader the necessary background for dealing with … Read more

Lower Bounds for Measurable Chromatic Numbers

The Lov\’asz theta function provides a lower bound for the chromatic number of finite graphs based on the solution of a semidefinite program. In this paper we generalize it so that it gives a lower bound for the measurable chromatic number of distance graphs on compact metric spaces. In particular we consider distance graphs on … Read more

Optimality and uniqueness of the (4,10,1/6) spherical code

Traditionally, optimality and uniqueness of an (n,N,t) spherical code is proved using linear programming bounds. However, this approach does not apply to the parameter (4,10,1/6). We use semidefinite programming bounds instead to show that the Petersen code (which are the vertices of the 4-dimensional second hypersimplex or the midpoints of the edges of the regular … Read more

Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps

In this paper we apply the semidefinite programming approach developed by the authors to obtain new upper bounds for codes in spherical caps. We compute new upper bounds for the one-sided kissing number in several dimensions where we in particular get a new tight bound in dimension 8. Furthermore we show how to use the … Read more

New upper bounds for kissing numbers from semidefinite programming

Recently A. Schrijver derived new upper bounds for binary codes using semidefinite programming. In this paper we adapt this approach to codes on the unit sphere and we compute new upper bounds for the kissing number in several dimensions. In particular our computations give the (known) values for the cases n = 3, 4, 8, … Read more