Matchings, hypergraphs, association schemes, and semidefinite optimization

We utilize association schemes to analyze the quality of semidefinite programming (SDP) based convex relaxations of integral packing and covering polyhedra determined by matchings in hypergraphs. As a by-product of our approach, we obtain bounds on the clique and stability numbers of some regular graphs reminiscent of classical bounds by Delsarte and Hoffman. We determine … Read more

New bounds for the max-hBccut and chromatic number of a graph

We consider several semidefinite programming relaxations for the max-$k$-cut problem, with increasing complexity. The optimal solution of the weakest presented semidefinite programming relaxation has a closed form expression that includes the largest Laplacian eigenvalue of the graph under consideration. This is the first known eigenvalue bound for the max-$k$-cut when $k>2$ that is applicable to … Read more

Optimality and uniqueness of the (4,10,1/6) spherical code

Traditionally, optimality and uniqueness of an (n,N,t) spherical code is proved using linear programming bounds. However, this approach does not apply to the parameter (4,10,1/6). We use semidefinite programming bounds instead to show that the Petersen code (which are the vertices of the 4-dimensional second hypersimplex or the midpoints of the edges of the regular … Read more