A Framework for Explainable Knowledge Generation with Expensive Sample Evaluations

Real world problems often require complex modeling and computation efforts to be effectively addressed. Relying solely on data-driven approaches without integrating physics-based models can result in limited predictive capabilities. Even advanced techniques such as deep learning may be impractical for decision-makers due to the lack of data and challenges in justifying and explaining results. In … Read more

A proof for multilinear error bounds

We derive the error bounds for multilinear terms in $[0,1]^n$ using a proof methodology based on the polyhedral representation of the convex hull. We extend the result for multilinear terms in $[\boldsymbol{L},\boldsymbol{0}] \times [\boldsymbol{0},\boldsymbol{U}]\subset\mathbb{R}^n$. ArticleDownload View PDF