Enhancements of Extended Locational Marginal Pricing – Advancing Practical Implementation

Price formation is critical to efficient wholesale electricity markets that support reliable operation and efficient investment. The Midcontinent Independent System Operator (MISO) developed the Extended Locational Marginal Pricing (ELMP) with the goal of more completely reflecting resource costs and generally improving price formation to better incent market participation. MISO developed ELMP based on the mathematical … Read more

Distributionally Robust Optimization under Distorted Expectations

Distributionally robust optimization (DRO) has arose as an important paradigm to address the issue of distributional ambiguity in decision optimization. In its standard form, DRO seeks an optimal solution against the worst-possible expected value evaluated based on a set of candidate distributions. In the case where a decision maker is not risk neutral, the most … Read more

Solving Mixed-Integer Nonlinear Optimization Problems using Simultaneous Convexification – a Case Study for Gas Networks

Solving mixed-integer nonlinear optimization problems (MINLPs) to global optimality is extremely challenging. An important step for enabling their solution consists in the design of convex relaxations of the feasible set. Known solution approaches based on spatial branch-and-bound become more effective the tighter the used relaxations are. Relaxations are commonly established by convex underestimators, where each … Read more

On the computation of convex envelopes for bivariate functions through KKT conditions

In this paper we exploit a slight variant of a result previously proved in [11] to define a procedure which delivers the convex envelope of some bivariate functions over polytopes. The procedure is based on the solution of a KKT system and simplifies the derivation of the convex envelope with respect to previously proposed techniques. … Read more

On convex relaxations for quadratically constrained quadratic programming

We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative … Read more

What Shape is your Conjugate? A Survey of Computational Convex Analysis and its Applications

Computational Convex Analysis algorithms have been rediscovered several times in the past by researchers from different fields. To further communications between practitioners, we review the field of Computational Convex Analysis, which focuses on the numerical computation of fundamental transforms arising from convex analysis. Current models use symbolic, numeric, and hybrid symbolic-numeric algorithms. Our objective is … Read more

Computable representations for convex hulls of low-dimensional quadratic forms

Let C be the convex hull of points {(1;x)(1,x’)| x \in F\subset R^n}. Representing or approximating C is a fundamental problem for global optimization algorithms based on convex relaxations of products of variables. If n

A Simplicial Branch-and-Bound Algorithm for Solving Quadratically Constrained Quadratic Programs

We propose a branch-and-bound algorithm for solving nonconvex quadratically-constrained quadratic programs. The algorithm is novel in that branching is done by partitioning the feasible region into the Cartesian product of two-dimensional triangles and rectangles. Explicit formulae for the convex and concave envelopes of bilinear functions over triangles and rectangles are derived and shown to be … Read more