Black-box optimization for the design of a jet plate for impingement cooling

In this work we show how exploiting black-box optimization in the design of a cooling system for a nozzle in a gas turbine. We develop a black-box function that simulates an impingement cooling system starting from a well-known model that correlates the design features of the cooling system with efficiency parameters. We also provide a … Read more

Sensitivity-based decision support for critical measures using the example of COVID-19 dynamics

We parametrize public policies in the context of the COVID-19 pandemic to evaluate the effectiveness of policies through sensitivity-based methods in order to offer insights into understanding the contributions to critical measures in retrospective. The study utilizes a group-specific SEIR model with a tracing and isolation strategy and vaccination programs. Public policies are applied to … Read more

Application of a Gas Market Model with Linear Programming. The Influence of the Dollar Exchange Rate on the Wholesale Price of Natural Gas in Northwest Europe until 2040

The price of natural gas at wholesale markets in Northwest Europe is influenced by numerous parameters. The USD to EUR exchange rate is one of these parameters. Using the LP-based gas market model WEGA, this paper will examine the impact of USD exchange rates on wholesale natural gas prices in Northwest Europe from 2025 to … Read more

Decision Intelligence for Nationwide Ventilator Allocation

Many states in the U.S. have faced shortages of medical resources because of the surge in the number of patients suffering from COVID-19. As many projections indicate, the situation will be far worse in coming months. The upcoming challenge is not only due to the exponential growth in cases but also because of inherent uncertainty … Read more

An Upper Bound on the Hausdorff Distance Between a Pareto Set and its Discretization in Bi-Objective Convex Quadratic Optimization

We provide upper bounds on the Hausdorff distances between the efficient set and its discretization in the decision space, and between the Pareto set (also called the Pareto front) and its discretization in the objective space, in the context of bi-objective convex quadratic optimization on a compact feasible set. Our results imply that if t … Read more

Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic Reserves and Demand Forecasting

Forecasting and decision-making are generally modeled as two sequential steps with no feedback, following an open-loop approach. In this paper, we present application-driven learning, a new closed-loop framework in which the processes of forecasting and decision-making are merged and co-optimized through a bilevel optimization problem. We present our methodology in a general format and prove … Read more

A simulation-based optimization approach for the calibration of a discrete event simulation model of an emergency department

Accurate modeling of the patient flow within an Emergency Department (ED) is required by all studies dealing with the increasing and well-known problem of overcrowding. Since Discrete Event Simulation (DES) models are often adopted with the aim of assessing solutions for reducing the impact of this worldwide phenomenon, an accurate estimation of the service time … Read more

Adaptable Energy Management System for Smart Buildings

This paper presents a novel adaptable energy management system for smart buildings. In this framework we model the energy consumption of a living unit, and its energy exchange with the surroundings. We explicitly consider the impact of the outside environment and design features such as building orientation, automatic shading, and double facade. We formulate this … Read more

Expensive multi-objective optimization of electromagnetic mixing in a liquid metal

This paper presents a novel trust-region method for the optimization of multiple expensive functions. We apply this method to a biobjective optimization problem in fluid mechanics, the optimal mixing of particles in a flow in a closed container. The three-dimensional time-dependent flows are driven by Lorentz forces that are generated by an oscillating permanent magnet … Read more