Accelerated Gradient Dynamics on Riemannian Manifolds: Faster Rate and Trajectory Convergence

In order to minimize a differentiable geodesically convex function, we study a second-order dynamical system on Riemannian manifolds with an asymptotically vanishing damping term of the form \(\alpha/t\). For positive values of \(\alpha\), convergence rates for the objective values and convergence of trajectory is derived. We emphasize the crucial role of the curvature of the … Read more

Near-optimal closed-loop method via Lyapunov damping for convex optimization

We introduce an autonomous system with closed-loop damping for first-order convex optimization. While, to this day, optimal rates of convergence are only achieved by non-autonomous methods via open-loop damping (e.g., Nesterov’s algorithm), we show that our system is the first one featuring a closed-loop damping while exhibiting a rate arbitrarily close to the optimal one. … Read more