^phBcnorms, log-barriers and Cramer transform in optimization

We show that the Laplace approximation of a supremum by $L^p$-norms has interesting consequences in optimization. For instance, the logarithmic barrier functions (LBF) of a primal convex problem $P$ and its dual $P^*$ appear naturally when using this simple approximation technique for the value function $g$ of $P$ or its Legendre-Fenchel conjugate $g^*$. In addition, … Read more

Simple Explicit Formula for Counting Lattice Points of Polyhedra

Given $z\in C^n$ and $A\in Z^{m\times n}$, we consider the problem of evaluating the counting function $h(y;z):=\sum\{z^x : x \in Z^n; Ax = y, x \geq 0\}$. We provide an explicit expression for $h(y;z)$ as well as an algorithm with possibly numerous but simple computations. In addition, we exhibit finitely many fixed convex cones of … Read more

On counting integral points in a convex rational polytope

Given a convex rational polytope $\Omega(b):=\{x\in\R^n_+\,|\,Ax=b\}$, we consider the function $b\mapsto f(b)$, which counts the nonnegative integral points of $\Omega(b)$. A closed form expression of its $\Z$-transform $z\mapsto \mathcal{F}(z)$ is easily obtained so that $f(b)$ can be computed as the inverse $\Z$-transform of $\mathcal{F}$. We then provide two variants of an inversion algorithm. As a … Read more

Solving the knapsack problem via Z-transform

Given vectors $a,c\in Z^n$ and $b\in Z$, we consider the (unbounded) knapsack optimization problem $P:\,\min\{c’x\,\vert\, a’x=b;\,x\in N^n\}$. We compute the minimum value $p^*$ using techniques from complex analysis, namely Cauchy residue technique to integrate a function in $C^2$, the $Z$-transform of an appropriate function related to $P$. The computational complexity depends on $s:=\sum_{a_j} a_j$, not … Read more

A Laplace transform algorithm for the volume of a convex polytope

We provide two algorithms for computing the volume of the convex polytope $\Omega:=\{x\in \R^n_+ \,|\,Ax\leq b\}$, for $A\in\R^{m\times n}, b\in\R^n$. The computational complexity of both algorithms is essentially described by $n^m$, which makes them especially attractive for large $n$ and relatively small $m$, when the other methods with $O(m^n)$ complexity fail. The methodology which differs … Read more