Polynomial argmin for recovery and approximation of multivariate discontinuous functions

We propose to approximate a (possibly discontinuous) multivariate function f(x) on a compact set by the partial minimizer arg min_y p(x,y) of an appropriate polynomial p whose construction can be cast in a univariate sum of squares (SOS) framework, resulting in a highly structured convex semidefinite program. In a number of non-trivial cases (e.g. when … Read more

Certifying Global Optimality of AC-OPF Solutions via sparse polynomial optimization

We report the experimental results on certifying 1% global optimality of solutions of AC-OPF instances from PGLiB via the CS-TSSOS hierarchy — a moment-SOS based hierarchy that exploits both correlative and term sparsity, which can provide tighter SDP relaxations than Shor’s relaxation. Our numerical experiments demonstrate that the CS-TSSOS hierarchy scales well with the problem … Read more

Revisiting semidefinite programming approaches to options pricing: complexity and computational perspectives

In this paper we consider the problem of finding bounds on the prices of options depending on multiple assets without assuming any underlying model on the price dynamics, but only the absence of arbitrage opportunities. We formulate this as a generalized moment problem and utilize the well-known Moment-Sum-of-Squares (SOS) hierarchy of Lasserre to obtain bounds … Read more

Homogeneous polynomials and spurious local minima on the unit sphere

We consider degree-d forms on the Euclidean unit sphere. We specialize to our setting a genericity result by Nie obtained in a more general framework. We exhibit an homogeneous polynomial Res in the coefficients of f, such that if Res(f) is not zero then all points that satisfy first- and second-order necessary optimality conditions are … Read more

Homogeneous polynomials and spurious local minima on the unit sphere

We consider forms on the Euclidean unit sphere. We obtain obtain a simple and complete characterization of all points that satisfies the standard second-order necessary condition of optimality. It is stated solely in terms of the value of (i) f, (ii) the norm of its gradient, and (iii) the first two smallest eigenvalues of its … Read more

The Moment-SOS hierarchy and the Christoffel-Darboux kernel

We consider the global minimization of a polynomial on a compact set B. We show that each step of the Moment-SOS hierarchy has a nice and simple interpretation that complements the usual one. Namely, it computes coefficients of a polynomial in an orthonormal basis of $L^2(B,\mu)$ where $\mu$ is an arbitrary reference measure whose support … Read more

Graph Recovery From Incomplete Moment Information

We investigate a class of moment problems, namely recovering a measure supported on the graph of a function from partial knowledge of its moments, as for instance in some problems of optimal transport or density estimation. We show that the sole knowledge of first degree moments of the function, namely linear measurements, is sufficient to … Read more

Stokes, Gibbs and volume computation of semi-algebraic sets

We consider the problem of computing the Lebesgue volume of compact basic semi-algebraic sets. In full generality, it can be approximated as closely as desired by a converging hierarchy of upper bounds obtained by applying the Moment-SOS (sums of squares) methodology to a certain infinite-dimensional linear program (LP). At each step one solves a semidefinite … Read more

Dual optimal design and the Christoffel-Darboux polynomial

The purpose of this short note is to show that the Christoffel-Darboux polynomial, useful in approximation theory and data science, arises naturally when deriving the dual to the problem of semi-algebraic D-optimal experimental design in statistics. It uses only elementary notions of convex analysis. ArticleDownload View PDF

Connecting optimization with spectral analysis of tri-diagonal matrices

We show that the global minimum (resp. maximum) of a continuous func- tion on a compact set can be approximated from above (resp. from below) by computing the smallest (rest. largest) eigenvalue of a hierarchy of (r × r) tri-diagonal matrices of increasing size. Equivalently it reduces to computing the smallest (resp. largest) root of … Read more