Log-domain interior-point methods for convex quadratic programming

Applying an interior-point method to the central-path conditions is a widely used approach for solving quadratic programs. Reformulating these conditions in the log-domain is a natural variation on this approach that to our knowledge is previously unstudied. In this paper, we analyze log-domain interior-point methods and prove their polynomial-time convergence. We also prove that they … Read more

A geodesic interior-point method for linear optimization over symmetric cones

We develop a new interior-point method (IPM) for symmetric-cone optimization, a common generalization of linear, second-order-cone, and semidefinite programming. In contrast to classical IPMs, we update iterates with a geodesic of the cone instead of the kernel of the linear constraints. This approach yields a primal-dual-symmetric, scale-invariant, and line-search-free algorithm that uses just half the … Read more

Solving conic optimization problems via self-dual embedding and facial reduction: a unified approach

We establish connections between the facial reduction algorithm of Borwein and Wolkowicz and the self-dual homogeneous model of Goldman and Tucker when applied to conic optimization problems. Specifically, we show the self-dual homogeneous model returns facial reduction certificates when it fails to return a primal-dual optimal solution or a certificate of infeasibility. Using this observation, … Read more